

Department of Food Analysis and Nutrition

Standard Operation Procedure

Authentication of Organic Fruits and Vegetables: Rapid UHPLC-HRMS method for pesticide metabolites screening

1 GOALS

The goal of this document is to describe the generic strategy for authentication of organic fruits and vegetables. The concept described below was demonstrated on authentication of grapes and wine, nevertheless can be employed for any other plant matrix to document pesticides use.

2 THEORETICAL BACKGROUND

Organic crops

European regulation (EC) No 834/2007 on organic production and labelling of organic products states that: Organic production is a system of farm management and food production that combines best environmental practices with a high level of biodiversity, the preservation of natural resources, the application of high animal welfare standards and a production method in line with the preference of certain consumers for products produced using natural substances and processes. European regulation (EC) No 889/2008 laying down rules for the implementation of Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control says that: The use of pesticides, which may have detrimental effects on the environment or, result in the presence of residues in agricultural products, should be significantly restricted, only those (natural) compounds listed at the end of document can be used.

Illegal practices in organic farming: pesticides use

Worth to notice, that illegal use of pesticides represents one of fraudulent practices on organic crops. Modern (synthetic) pesticides rapidly degrade after their application due to both physicochemical factors and through biotransformation (se Figure 1 below). Consequently, pesticide residues in samples might be either undetectable or detected at low concentrations ($\leq 10 \ \mu g/kg$). In other words, residues control might fail to disclose mislabelling (product from organic farming declared as organic). Under such conditions, a monitoring of pesticide metabolites in samples might be a conceivable solution enabling the documentation of earlier pesticide use. Specifically in situation when residues at 10 $\mu g/kg$ are found, it might be rather difficult to decide whether their

presence is due to accidental contamination e.g. through atmospheric transport or illegal application. However, as far as in addition to parent pesticides also their metabolites are present, then, it becomes evident that some time ago residues higher than 10 µg/kg were contained thus indicating intentional use.

Strategy to document illegal pesticides use in organic farming

As mentioned in the paragraph above, the analysis of pesticide metabolites in crop labelled as organic may support assessment of the way of its contamination. Analysis of metabolites might pose analytical challenges because pesticide degradation leads to the production of a number of metabolites, differing somewhat in their structure and polarity, moreover they may occur at very low levels due to several metabolic pathways may take place in transformation.

Introduction of demonstration case study

This study was focused on the determination of pesticide residues and their metabolites in samples of grapevine and wine using ultrahigh performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLS-HRMS), with the objective of supporting the possibility of the verification of the method of farming. It documents the identification of pesticide metabolites commonly used in conventional farming and provides a characterization of pesticide degradation during grapevine growth, maturation, and during the wine-making process.

Figure 1 Pesticides biotransformation (pesticide metabolites origination)

3 STANDARD OPERATION PROCEDURE

3.1 MATERIALS

Certified standards of pesticides (dimethomorph, fenhexamid, iprovalicarb, metrafenone, pyraclostrobin, quinoxyfen, spiroxamine, tebuconazole, and triadimenol) were purchased from Dr. Ehrenstorfer GmbH (Augsburg, Germany), Honeywell Fluka, or Honeywell Riedel-de Haen (both Seelze, Germany). The purity of standards was in the range of 98–99.9%. The internal standards for triphenyl phosphate (TPP) and nicarbazin were obtained from Sigma-Aldrich (St. Louis, MO). Stock solutions of the individual pesticides were prepared in pure methanol, acetonitrile, or acetone containing 1% formic acid (v/v), depending on the solubility of the specific pesticide. A composite stock standard in acetonitrile was prepared at 50 000 ng mL⁻¹ from stock solutions and was stored at -18 °C. The working standard mixtures (20–2000 ng mL⁻¹) used for matrix-matched calibration were prepared from a stock solution by further dilution with acetonitrile.

HPLC-grade acetonitrile, LC–MS-grade formic acid, ammonium formate, and ammonium acetate were obtained from Sigma-Aldrich. Methanol was obtained from Merck (Darmstadt, Germany). Acetone and sodium chloride were obtained from Penta (Chrudim, Czech Republic). Anhydrous magnesium sulfate was obtained from Honeywell Fluka. Deionized water (18 M Ω) was produced using a Millipore Milli-Q system (Bedford, MA).

3.2 SAMPLE PREPARATION

Prior to the analysis, solid samples (vine leaves and wine grapes) were homogenized using a laboratory blender. Liquid samples (musts and wines) were mixed thoroughly. Parent pesticides were determined using an ISO 17025 accredited method routinely used in our laboratory. A new extraction/detection method had to be implemented for the analysis of metabolites.

3.3 EXTRACTION OF PARENT PESTICIDE RESIDUES

The extraction procedure was based on the QuEChERS method. In total, 2.5 g of homogenized vine leaves were weighed into a 50 mL centrifugation tube, followed by

the addition of 10 mL of water containing 1% (v/v) of formic acid. The matrix was allowed to soak for 20 min. In the case of wine grapes/wine, 10 g of previously homogenized samples was weighed into a 50 mL plastic centrifuge tube without water addition. Subsequently, 10 mL of acetonitrile was added and the tube was vigorously shaken for 2 min. In the next step, 1 g of NaCl and 4 g of MgSO₄ were added and the shaking process was repeated for 1 min. Then 100 μ L of the mixture of TPP and nicarbazin (5 μ g mL⁻¹) as an internal standard was added, and the tubes were centrifuged for 5 min at 11 200 rcf. An aliquot of the supernatant was transferred into a vial.

In the case of wine samples, the volume of the extract (top organic layer) was affected by the ethanol naturally present in wines (11–15 vol %). To compensate for this effect, an addition of internal standards was used.

3.4 IDENTIFICATION AND QUANTIFICATION OF PESTICIDE RESIDUES

Identification of pesticide residues in the samples was based on a comparison of retention time, accurate mass (m/z) of the (de)protonated molecule, isotopic pattern matching, and accurate mass of MS/MS fragments to those obtained for pesticide reference standards. The acceptable mass error of potential elemental composition for the (de)protonated molecule was ±5 ppm. The identification criteria were in accordance with the requirements in the European Commission's guideline SANTE/11813/2017.(1)

Quantification was performed by using a calibration curve based on matrix-matching calibration standards. To obtain matrix-matched standards corresponding to concentration levels 1, 2, 5, 10, 20, 50, and 100 ng mL⁻¹, 50 μ L of a specific working standard mixture and 50 μ L of internal standard (1 μ g mL⁻¹) were added to 900 μ L of the blank extract (blank extract diluted with acetonitrile in ratios of 1:9 and 1:99).

3.5 LC-MS PARAMETERS

The LC–HRMS(/MS) analyses of fungicide residues and their metabolites were performed using an Agilent Infinity 1290 LC system (Agilent Technologies), equipped with an Acquity UPLC HSS T3 analytical column (100 mm × 2.1 mm, 1.8 µm particle size, Waters). Mass spectrometry detection was performed using quadrupole-time of

flight mass spectrometry (Agilent Ion-Mobility Q-TOF 6560) in positive and negative electrospray ionization (ESI) modes.

The column temperature was maintained at 40 °C. The injected sample volume was 4 μ L. The mobile phases were different for analyses in electrospray positive (ESI+) and negative (ESI-) ionization modes. For compounds detected in the ESI+, mobile phases were (A) water with 5 mM ammonium formate and 0.1% (v/v) formic acid and (B) methanol, respectively. For compounds detected in the ESI-, mobile phases were (A) water with 5 mM ammonium acetate and (B) pure methanol. The gradient was the same in both polarities: the starting mobile phase composition was 5% of the organic phase (B) with a flow of 0.2 mL min⁻¹ and linearly changed to 99% (B) with a flow of 0.3 mL min⁻¹ in 10 min. This mobile phase composition was held for 2 min simultaneously with the flow rate being changed from 0.3 to 0.4 mL min⁻¹. The column was reconditioned for 2 min in the starting composition of 5% (B) (flow rate, 0.4 mL min⁻¹). The autosampler temperature was maintained at 5 °C.

The MS source conditions were as follows: capillary voltage (VCap) was 4 kV (-4 kV in ESI-); nozzle voltage was 1 kV; gas temperature and sheath gas temperature were 210 and 380 °C, respectively; drying gas flow and sheath gas flow were 10 L min⁻¹ and 12 L min⁻¹, respectively, and nebulizer pressure was 342.6 kPa (35 psig) in both acquisition modes. Collision-induced dissociation was performed using nitrogen, and the collision energy was fixed (20 V). Agilent MassHunter Workstation software (version B.07.00; Agilent Technologies) was used for data acquisition and data analysis.

3.6 STRATEGY FOR DETECTION AND IDENTIFICATION OF PESTICIDE METABOLITES

Detection and identification of pesticide metabolites in sample were based on the calculated accurate mass (m/z), isotopic pattern matching, and accurate mass of MS/MS fragments. The acceptable mass error of the potential elemental composition for the (de)protonated molecule was ±5 ppm.

At first, high-resolution mass spectra in a full-scan technique (without fragmentation, MS^1) were acquired across the entire chromatographic run, using a mass range of m/z 100–1100. The obtained data were searched against the database o-f elemental composition of metabolites (csv format of file), created manually based on a survey of

the available literature on pesticide metabolism in plants (see Table 1), and consideration of common metabolic reactions (e.g., oxidation, dealkylation).

no.	analyte (parent pesticide and its metabolite)	elemental composition	ref	no.	analyte (parent pesticide and its metabolite)	elemental composition	ref
1	dimethomorph	$C_{21}H_{22}CINO_4$		6	quinoxyfen	C ₁₅ H ₈ Cl ₂ FNO	
1a	dimethomorph- demethyl	$C_{20}H_{20}CINO_4$		6a	3-hydroxy-quinoxyfen	$C_{15}H_8CI_2FNO_2$	<u>(5)</u>
1b	dimethomorph- demethyl glycoside	C ₂₆ H ₃₀ CINO ₉	<u>(4)</u>	6b	CFBPQ	C ₁₅ H7CIFNO	
1c	dimethomorph-Z7	C ₁₅ H ₁₃ CINO ₃		7	spiroxamine	C ₁₈ H ₃₅ NO ₂	
1d	dimethomorph-Z37	$C_{21}H_{20}CINO_5$		7a	spiroxamine-N-oxide	C ₁₈ H ₃₅ NO ₃	
1e	dimethomorph-hydroxy	$C_{21}H_{22}CINO_5$		7b	spiroxamine- <i>N</i> - desethyl	$C_{16}H_{31}NO_2$	
2	fenhexamid	$C_{14}H_{17}CI_2NO_2$		7c	spiroxamine- <i>N</i> - despropyl	C ₁₅ H ₂₉ NO ₂	
2a	fenhexamid-glycoside	C ₂₀ H ₂₇ Cl ₂ NO7	(0)	7d	spiroxamine- cyclohexanol	C ₁₀ H ₂₀ O	<u>(6)</u>
2b	fenhexamid-hydroxy	$C_{14}H_{17}Cl_2NO_3$	<u>(3)</u>	7e	spiroxamine- cyclohexanol glycoside	$C_{16}H_{30}O_{6}$	
2c	fenhexamid-hydroxy glycoside	$C_{20}H_{27}Cl_2NO_8$		7f	spiroxamine-diol	C ₁₀ H ₂₀ O	
3	iprovalicarb	$C_{18}H_{28}N_2O_3$		7g	spiroxamine-diol glycoside	C ₁₆ H ₃₀ O ₆	
3a	iprovalicarb-hydroxy	C ₁₈ H ₂₈ N ₂ O ₄	<u>(7)</u>	8	tebuconazole	C ₁₆ H ₂₂ CIN ₃ O	
3b	iprovalicarb-hydroxy glycoside	$C_{24}H_{38}N_2O_9$		8a	tebuconazole-hydroxy	$C_{16}H_{22}CIN_3O_2$	<u>(8)</u>
4	metrafenone	$C_{19}H_{21}BrO_5$		8b	tebuconazole-hydroxy glycoside	C22H32CIN3O7	
4a	metrafenone CL 1500836	$C_{19}H_{20}O_6$		9	triadimenol	C ₁₄ H ₁₈ CIN ₃ O ₂	
4b	metrafenone CL 3000402	$C_{19}H_{19}BrO_6$	<u>(9)</u>	9a	triadimenol glycoside	C20H28CIN3O7	(10)
4c	metrafenone CL 379395	$C_{19}H_{19}BrO_6$		9b	triadimenol-hydroxy	C14H18CIN3O3	<u>(10)</u>
4d	metrafenone CL 197675	C ₁₉ H ₁₉ BrO ₇		9c	triadimenol-hydroxy glycoside	C20H28CIN3O8	
5	pyraclostrobin	C ₁₉ H ₁₈ CIN ₃ O ₄					
5a	pyraclostrobin-hydroxy	C19H18CIN3O5					
5b	pyraclostrobin- desmethoxy	C ₁₈ H ₁₆ CIN ₃ O ₃	<u>(11</u>)	<u>)</u>			
5c	pyraclostrobin-hydroxy glycoside	$C_{25}H_{28}CIN_3O_{10}$					

Table 1 Library of screened pesticide residues and their metabolites

In the next step, the identity confirmation of metabolites detected in MS^1 was based on data acquired in the MS/MS run. Three categories of fragments were searched: (i) diagnostic ions, known for some groups of fungicides (2); (ii) common fragments

detected in the MS/MS spectrum of the parent pesticide as well as its metabolite; (iii) fragments characterizing a part of molecule with metabolic modification, not detected in the MS/MS spectrum of the parent pesticide.

For identification of the conjugates of the parent pesticide and/or its metabolite, a search for neutral losses (e.g., hexoses) in fragmentation mass spectra was performed.

3.7 METHOD VALIDATION

Performance characteristics (recovery, repeatability, within-laboratory reproducibility, and limit of quantification) were determined for pesticide residues (parent compounds) in vine leaves, grapes, and wine. Validation studies were performed on spiked blank samples. Two spiking levels (0.002 mg kg⁻¹ and 0.02 mg kg⁻¹ in grapes and wine or 0.008 mg kg⁻¹ and 0.08 mg kg⁻¹ in vine leaves) were used and analyzed in six replicates. Within-laboratory reproducibility (RSD_R) was determined from ongoing QC-data in routine analyses (Table 2).

As standards of pesticide metabolites were not available, recovery experiments could not be performed. The precision (repeatability) of the method was determined by an analysis of samples containing incurred pesticide metabolites in six replicates (Tab 3).

			Grapes	5			
		0.002 m	g kg⁻¹		().02 mg k	(g ^{−1}
	LOQ	REC	RSD	RSD _R	REC	RSD	RSD _R
analyte	(mg kg ⁻¹)	(%)	(%)	(%)	(%)	(%)	(%)
dimethomorph	0.001	93	2	7	92	1	6
fenhexamid	0.001	88	3	10	89	4	5
iprovalicarb	0.001	90	2	13	94	5	8
metrafenone	0.001	84	6	7	97	3	5
pyraclostrobin	0.001	90	2	5	89	1	7
quinoxyfen	0.001	83	4	11	85	2	9
spiroxamine	0.001	94	1	12	90	2	9
tebucionazole	0.001	87	3	9	92	2	5
triadimenol	0.01	<loq< td=""><td></td><td></td><td>92</td><td>4</td><td>16</td></loq<>			92	4	16

Table 2 Method validation (n = 6): recoveries (REC), limits of quantification (LOQs), repeatabilities (RSD), reproducibilities (RSD_R), in grapes, wine, and vine leaves

			Grapes	5			
		0.002 m	g kg⁻¹		C).02 mg k	(g ^{−1}
	LOQ	REC	RSD	RSD _R	REC	RSD	RSD _R
analyte	(mg kg⁻¹)	(%)	(%)	(%)	(%)	(%)	(%)

			Wir	ne			
			0.002 mg kg ⁻	-1	0.02	mg kg ⁻¹	
	LOQ	REC	RSD	RSD _R	REC	RSD	RSD_R
analyte	(mg kg ⁻¹)	(%)	(%)	(%)	(%)	(%)	(%)
dimethomorph	0.001	96	2	8	91	4	5
fenhexamid	0.001	98	3	9	94	2	5
iprovalicarb	0.001	94	16	11	93	2	9
metrafenone	0.001	94	2	8	95	1	7
pyraclostrobin	0.001	89	2	6	88	1	6
quinoxyfen	0.001	88	3	9	90	1	5
spiroxamine	0.001	91	1	10	84	9	7
tebuconazole	0.001	92	2	11	95	1	5
triadimenol	0.01	<loq< td=""><td></td><td></td><td>96</td><td>5</td><td>15</td></loq<>			96	5	15

		Vine Leaves					
		0	.008 mg kg ⁻¹		0.0	8 mg kg	-1
	LOQ	REC	RSD	RSD _R	REC	RSD	RSD _R
analyte	(mg kg ⁻¹)	(%)	(%)	(%)	(%)	(%)	(%)
dimethomorph	0.004	95	3	9	93	4	8
fenhexamid	0.008	89	3	11	88	2	10
iprovalicarb	0.004	90	11	17	90	2	15
metrafenone	0.004	88	2	9	93	2	9
pyraclostrobin	0.004	89	1	10	88	1	8
quinoxyfen	0.004	81	4	8	82	3	10
spiroxamine	0.004	92	2	12	93	3	10
tebuconazole	0.004	91	2	7	88	2	6
triadimenol	0.04	<loq< td=""><td></td><td></td><td>83</td><td>7</td><td>18</td></loq<>			83	7	18

	vine leaves	grapes
metabolite of pesticide	RSD (%)	RSD (%)
dimethomorph-demethyl	13	4
fenhexamid glycoside	8	4
fenhexamid-hydroxy	12	3
fenhexamid-hydroxy glycoside	5	2
iprovalicarb-hydroxy	14	8
iprovalicarb-hydroxy glycoside	13	3
metrafenone-CL 1500836	6	-
metrafenone-CL 379395	6	-
metrafenone-CL 3000402	4	-
pyraclostrobin-desmethoxy	6	4
pyraclostrobin-hydroxy	3	6
spiroxamine- <i>N</i> -desethyl	14	3
spiroxamine- <i>N</i> -despropyl	10	3
spiroxamine- <i>N</i> -oxide	2	5
tebuconazole-hydroxy	9	4
tebuconazole-hydroxy glycoside	8	4

Table 3 Method validation for pesticide metabolites in vine leaves and grapes: method repeatability (RSD, n = 6)

4 ILLUSTRATION OF SREENING STRATEGY APPLICATION

The applicability of the described analytical strategy is illustrated through the Figures below. In Figure 2. Fenhexamid and its metabolites detected in grapes after 15 days of treatment with fungicide preparation are shown.

Figure 2. Extracted ion chromatogram (EIC): Fenhexamid (*m*/z 302.0709) and metabolites Fen-OH (*m*/z 318.0658) and Fen-dechloro (*m*/z 268.1099) in grapes.

In Figure 3, the application of the above procedure for screening of penconazole and its metabolites in apples is illustrated (generic approach employed).

Figure 3. Extracted ion chromatogram (EIC): Penconazole (m/z 284.0721), penconazole-hydroxy (m/z 300.0665) and penconazole-hydroxy glycoside (m/z 462.1176) in apples.

5 APPENDIX

In the attached excel file 'Pesticide metabolites database' is the overview of potential pesticide metabolites originated from selected parent compounds. These metabolites can be found in various source including JMPR (FAO/WHO) documents EU pesticide database, EFSA etc. Based on their elemental formula respective ions (protonated

deprotonated molecules, their adducts) originated in ESI source can be derived for LC-HRMS.

6 LITERATURE

- SANTE/11813/2017–Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed, <u>https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wr</u> <u>kdoc_2017-11813.pdf</u> (accessed October 10, 2018)
- Lacina, O.; Urbanova, J.; Poustka, J.; Hajslova, J. Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry. *Journal of Chromatography A* 2010, *1217* (5), 648–659, DOI: 10.1016/j.chroma.2009.11.098
- 3. FAO REPORT, <u>http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JM</u> <u>PR/JMPR05report.pdf</u> (accessed October 20, 2018).
- 4. European Food Safety Authority Modification of the existing MRLs for dimethomorph in various crops. *EFSA J.* 2010, *8* (5), 1622, DOI: 10.2903/j.efsa.2010.1622
- 5. FAO Evaluation, http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JM PR/Evaluation06/Quinoxyfen06.pdf (accessed November 20, 2018).
- European Food Safety Authority Conclusion on the peer review of the pesticide risk assessment of the active substance spiroxamine. *EFSA J.* 2010, *8* (10), 1719, DOI: 10.2903/j.efsa.2010.1719
- 7. European Food Safety Authority Conclusion on the peer review of the pesticide risk assessment of the active substance iprovalicarb. *EFSA J.* 2015, *13* (4), 4060, DOI: 10.2903/j.efsa.2015.4060
- 8. European Food Safety Authority Conclusion on the peer review of the pesticide risk assessment of the active substance tebuconazole. *EFSA J.* 2014, *12* (1), 4000, DOI: 10.2903/j.efsa.2014.3485
- 9. European Food Safety Authority Modification of the existing MRLs for metrafenone in table and wine grapes. *EFSA J.* 2011, *9* (1), 1979, DOI: 10.2903/j.efsa.2011.1979
- European Food Safety Authority Conclusion regarding the peer review of the pesticide risk assessment of the active substance triadimenol. *EFSA J.* 2008, 6 (10), 177r, DOI: 10.2903/j.efsa.2008.177r
- 11. FAO Evaluation, http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JM PR/Evaluation04/Pyraclostrobinaf.pdf (accessed October 15, 2018).

PESTICIDES and their METABOLITES

Parent pesticide and their metabolites	Elemental formula
ACETAMIPRID	C10H11CIN4
acetamiprid-desmethyl	C ₉ H ₉ ClN ₄
acetamiprid IM-2-2	C ₉ H ₁₁ ClN ₄ O
acetamiprid IM-1-2	C ₁₀ H ₁₄ ClN ₄ O
acetamiprid IM-1-3	C ₉ H ₁₁ ClN ₂ O
acetamiprid IM-1-4	C ₇ H ₉ N ₂ Cl
acetamiprid IM-1-5	C ₉ H ₁₂ N ₃ Cl
6-chloronicotinic acid	C ₆ H ₄ CINO ₂
6-chloronicotinic acid-dehydroxy	C ₆ H ₆ CINO
BOSCALID	C18H12Cl2N2O
boscalid M510F47	C ₆ H ₄ CINO2
boscalid M510F62	C ₁₂ H ₁₀ CIN
boscalid-dihydroxy	$C_{18}H_{12}Cl_2N_2O_3$
boscalid-hydroxy	C18H12Cl2N2O2
boscalid-hyroxy glycoside	C24H22Cl2N2O7
BROMOPROPYLATE	C17H16Br2O3
4,4'-dibromobenzilic acid	$C_{14}H_{10}Br_2O_3$
BUPIRIMATE	C13H24N4O3S
ethirimol	C11H19N3O
ethirimol- hydroxy	C11H19N3O2
de-ethyl-ethirimol	C9H15N3O
CAPTAN	C ₉ H ₈ Cl ₃ NO ₂ S
THPI	C ₈ H ₉ NO ₂
captan epoxide	C ₈ H ₇ Cl ₃ NO ₃ S
THPI epoxide	C12H15NO6
THPAM	C ₈ H ₁₁ NO ₃
CARBENDAZIM	C ₉ H ₉ N ₃ O ₂
thiophanate-methyl	$C_{12}H_{14}N_4O_4S_2$
CYPERMETHRIN	C22H19C12NO3
3-phenoxybenzaldehyde	C13H10O2
3-phenoxybenzylalcohol	C13H12O2
3-phenoxybenzoic acid	C ₁₃ H ₁₀ O ₃
3-phenoxybenzylalcohol glycoside	C19H22O7
3-phenoxybenzoic acid glycoside	C ₁₉ H ₂₀ O ₁₀
CYPRODINIL	C14H15N3
cyprodinil-hydroxy	C14H15N3O
cyprodinil-hydroxy glycoside	C ₂₀ H ₂₅ N ₃ O ₆
1-phenylguanidine	C ₇ H ₉ N ₃
DELTAMETHRIN	C22H19Br2NO3
3-phenoxybenzylaldehyde	C13H10O2
3-phenoxybenzoic acid	C13H10O3

Parent pesticide and their metabolites	Elemental formula
DIFENOCONAZOLE	C19H17C12N3O3
1,2,4-triazole	$C_2H_3N_3$
triazole alanine	C5H8N4O2
triazole acetic acid	C4H8N4O2
difenoconazole CGA 189138	C13H8C12O3
difenoconazole CGA 205374	C16H11C12N3O2
difenoconazole CGA 205375	C16H14CIN3O2
difenoconazole-hydroxy	C19H17Cl2N3O4
difenoconazole-hydroxy CGA 205375	C16H14CIN3O3
DIMETHOATE	C5H12NO3PS2
omethoate	C5H12NO4PS
dimethoate-hydroxy-glucoside	C11H22NO9PS2
dimethoate-O-desmethyl	C4H10NO3PS2
DIMETHOMORPH	C ₂ 1H ₂₂ CINO ₄
dimethomorph-demethyl	C ₂₀ H ₂₀ CINO ₄
dimethomorph-demethyl glycoside	C26H30CINO9
dimethomorph-hydroxy	C21H22CINO5
DIPHENYLAMINE	C ₁₂ H ₁₁ N
diphenylamine-glucoside	C18H21NO5
4-hydroxy diphenylamine	C ₁₂ H ₁₁ NO
DITHIOCARBAMATES	-
aniline	C ₆ H ₇ N
maneb	C4H6MnN2S4
mancozeb	C8H12MnN4S8Zn
metiram	C4H6N2S4Zn
propineb	C5H8N2S4Zn
thiram	C ₆ H ₁₂ N ₂ S ₄
ziram	C ₆ H ₁₂ N ₂ S ₄ Zn
ETU (Ethylenethio urea)	C ₃ H ₆ N ₂ S
EBDC (ethylenebisdithiocarbamate)	$C_4H_8N_2S_4$
EBIS (ethylenebisisothiocyanate sulfide)	$C_4H_4N_2S_2$
EU (ethylen urea)	$C_4H_{10}N_4S_2$
DITHIANON	$C_{14}H_4N_2O_2S_2$
dithianon-desulfide (D 4110933)	$C_{14}H_4N_2O_2S$
phthalic acid	$C_8H_6O_4$
phthalaldehyde	C ₈ H ₆ O ₂
1,4-naphthoquinone	$C_{10}H_5O_2$
DODINE	C13H29N3
guanidine	CH ₅ N ₃
octylguanidine carboxylic acid	C9H13N3O2
hexylguanidine carboxylic acid	C7H15N3O2
dodecylguanidine carboxylic acid	C13H17N3O2

Parent pesticide and their metabolites	Elemental formula
ETHEPHON	C2H6ClO3P
HEPA	C ₂ H ₇ O ₄ P
ETOFENPROX	C25H28O3
etofenoprox-hydroxy	C25H28O4
alpha-CO (2-(4-ethoxyphenyl)-2-methylpropyl 3	C. H.O.
phenoxybenzoate)	025112604
FENAZAQUIN	C20H22N2O
4-OHQ	C ₈ H ₆ N ₂ O
TBPE	C ₁₂ H ₁₇ O
FENPYROXIMATE	C ₂₄ H ₂₇ N ₃ O ₄
fenpyroximate-demethyl	C23H25N3O4
fenpyroximate-hydroxy	C24H27N3O5
fenpyroximate M3	C20H18N3O3
N-desmethyl Fenpyroximate M3	C19H16N3O3
FENVALERATE	C ₂₅ H ₂₂ CINO ₃
CPIA	C ₁₁ H ₁₃ ClO ₂
decarboxy-fenvalerate	C24H22CINO
3-Phenoxybenzoic acid	C13H10O3
FLONICAMID	C ₉ H ₆ F ₃ N ₃ O
TFNA	C ₇ H ₄ NF ₃ O ₂
TFNG	C9H7N2F3O3
TFNA-AM	C ₇ H ₅ N ₂ F ₃ O
FLUXAPYROXAD	$C_{18}H_{12}F_5N_3O$
M700F002	C5H4N2F2O2
M700F008	C17H12N3F5O
M700F008-glucoside	C23H22N3F5O6
FLUIDOXINIL	$C_{12}H_6F_2N_2O_2$
2,2-difluoro-benzo[1,3]dioxole-4-carboxylic	$C_8H_4F_2O_4$
fludioxonil CGA 265378	$C_{12}H_4F_2O_4N$
fludioxonil CGA 308103	C ₈ H ₆ F ₂ NO ₄
fludioxonil SYN 518579	$C_{12}H_5F_2N_2O_4$
fludioxonil SYN 518580	$C_{12}H_4F_2N_2O_5$
fludioxonil SYN 518581	$C_{12}H_7F_2N_2O_6$
FLUOPYRAM	C ₁₆ H ₁₁ ClF ₆ N ₂ O
fluopyram-hydroxy	C ₁₆ H ₁₁ ClF ₆ N ₂ O ₂
fluopyram-hydroxy glycoside	C22H21ClF6N2O7
fluopyram-glycoside	C22H21ClF6N2O5
fluopyram-benzamide	C ₈ H ₆ F ₃ NO
HEXYTHIAZOX	C ₁₇ H ₂₁ ClN ₂ O ₂ S
hexythiazox-hydroxy	C ₁₇ H ₂₁ ClN ₂ O ₃ S
CHLORANTRANILIPROLE	C ₁₈ H ₁₄ BrCl ₂ N ₅ O ₂
chlorantraniliprole IN-F6L99	C ₅ H ₆ BrN ₃ O
chiorantraniliprole IN-ECD73	C ₁₃ H ₈ Cl ₂ N ₂ O
chlorantraniliprole IN-DBC80	C ₉ H ₅ BrCIN ₃ O ₂
chlorantraniliprole IN-EQW78	C ₁₈ H ₁₂ BrC ₁₂ N ₅ O
chlorantraniliprole IN-F9NO4	C ₁₇ H ₁₂ BrCl ₂ N ₅ O ₂
chlorantraniliprole IN-GAZ70	C ₁₇ H ₁₀ BrCl ₂ N ₅ O
chlorantraniliprole IN-H2H20	C ₁₈ H ₁₄ BrCl ₂ N ₅ O ₃

Parent pesticide and their metabolites	Elemental formula
CHLORPROPHAM	C10H12CINO2
3-chloroanilin	C8H8CINO
chlorpropham-hydroxy	C10H12CINO3
chlorpropham-glukoside	C16H22CINO7
CHLORPYRIFOS	C ₉ H ₁₁ Cl ₃ NO ₃ PS
TCP (3,5,6-trichloropyridinol)	C ₅ H ₂ Cl ₃ NO
chlorpyrifos IIIA	C ₆ H ₇ Cl ₃ NO ₃ PS
chlorpyrifos IIIB	C4H3Cl3NO3PS
DES (desmethyl chlorpyrifos-methyl)	C ₆ H ₅ Cl ₃ NO ₃ PS
chlorpyrifos TMP	C ₆ H ₄ Cl ₃ NO
chlorpyrifos-methyl	C7H7Cl3NPO3S
chlorpyrifos-hydroxy	C ₉ H ₁₁ Cl ₃ NO ₄ PS
IMAZALIL	C14H14Cl2N2O
R014821	C11H10Cl2N2O
INDOXACARB	C22H17CIF3N3O7
indoxacarb IN-KB687	C9H8F3O3N
indoxacarb IN-MA573	C ₉ H ₇ ClO ₄
indoxacarb IN-MF014	C10H10F3N3O4
indoxacarb IN-MH304	C11H9ClO4
indoxacarb-hydroxy	C22H17CIF3N3O8
IPRODIONE	C13H13Cl2N3O3
RP 32596	C ₆ H ₅ Cl ₂ N
RP 30228	C13H13Cl2N3O3
RP 32490	C10H7Cl2N3O3
RP 35606	C13H14Cl2N3O3
RP 30181	C ₆ H ₁₀ N ₂ O ₂
LAMBDA-CYHALOTHRIN	C23H19ClF3NO3
lambda-cyhalotrin R157836	C23H19ClF3NO3
gama-cyhalotrin	C23H19ClF3NO3
3-phenoxybenzaldehyde	C13H10O2
METHOXYFENOZIDE	C22H28N2O3
methoxyfenozide-hydroxy	C22H28N2O4
methoxyfenozide-hydroxy glucoside	C27H38N2O9
MYCLOBUTANIL	C15H17CIN4
myclobutanil-butyric acid	C13H11CIN4O2
myclobutanil-oxo	C15H15CIN4O
myclobutanil-hydroxy	C15H17CIN4O
2-PHENYLPHENOL	C ₁₂ H ₁₀ O
2-methoxybiphenyl	C13H12O
2-phenylphenol glycoside	C18H20O6
2-phenylhydroquinon	C12H10O2
PHOSMET	C11H12NO4PS2
phthalic acid	C ₈ H ₆ O ₄
phthalamic acid	C ₈ H ₇ NO ₃

Parent pesticide and their metabolites	Elemental formula
PIRIMICARB	C11H18N4O2
pirimicarb-hydroxy	C11H18N4O3
pirimicarb-desmethyl	$C_{10}H_{16}N_4O_2$
pirimicarb-desmethyl formamid	C7H11N3O
PROPAMOCARB	C ₉ H ₂₀ N ₂ O ₂
propamocarb-2-hydroxy	C9H20N2O3
oxazolidine	C ₃ H ₇ NO
N-desmethyl-propamocarb	C8H18N2O2
PROPARGITE	C19H26O4S
TBPC	C16H24O2
TBPC diol	C16H24O3
HOMe TBPC	C16H24O3
HOMe TBPC	C16H24O4
PYRACLOSTROBIN	C19H18CIN3O4
pyraclostrobin-hydroxy	C19H18CIN3O5
pyraclostrobin-hydroxy glycoside	C25H28CIN3O10
pyraclostrobin-desmethoxy	C18H16CIN3O3
PYRIMETHANIL	C12H13N3
pyrimethanil-dihydroxy	C12H13N3O2
pyrimethanil-dihydroxy glucoside	C18H23N3O7
pyrimethanil-hydroxy	C12H13N3O
pyrimethanil-hydroxy glucoside	C18H23N3O6
SPIRODICLOFEN	C21H24Cl2O4
spirodiclofen-enol	C15H14Cl2O3
spirodiclofen-enol-hydroxy	C15H14Cl2O4
2,4-dichloro-mandelic acid glucoside	C14H16Cl2O8
TEBUCONAZOLE	C16H22CIN3O
tebuconazole glycoside	C22H32CIN3O6
tebuconazole-hydroxy	C16H22CIN3O2
tebuconazole-hydroxy glycoside	C22H32CIN3O7
1,2,4-triazole	C2H3N3
triazole acetic acid	$C_4H_5N_3O_2$
TEBUFENOZIDE	$C_{22}H_{28}N_2O_2$
RH-1788	C21H32N2O2
RH-9886	C22H19N2O3
RH-2651	$C_{21}H_{29}N_2O_4$
RH-6595	C21H31N2O3
TEBUFENPYRAD	C18H24CIN3O
tebufenpyrad-demethyl	C17H22CIN3O
tebufenpyrad-hydroxy	C18H24CIN3O2
tebufenpyrad-dihydroxy	C18H24CIN3O3
TETRACONAZOLE	C13H11Cl2F4N3O
1,2,4-triazole	C2H3N3
triazole alanine	C ₅ H ₈ N ₄ O ₂
triazole acetic acid	$C_4H_8N_4O_2$

Elemental formula	Parent pesticide and their metabolites	Elemental fo
$C_{11}H_{18}N_4O_2$	THIABENDAZOLE	C10H7N
C11H18N4O3	thiabenzimidazole-hydroxy	C10H7N3
C10H16N4O2	benzimidazole glucoside	C13H16N2
C7H11N3O	benzimidazole	C ₇ H ₆ N
C9H20N2O2	THIACLOPRID	C ₁₀ H ₉ ClN
C ₉ H ₂₀ N ₂ O ₃	thiacloprid-amid	C10H11CIN
C ₃ H ₇ NO	thiacloprid-hydroxy	C ₁₀ H ₉ CIN
$C_8H_{18}N_2O_2$	thiacloprid-sulfoxide	C10H9CIN4
C19H26O4S	6-chloronicotinic acid	C ₆ H ₄ CIN
C16H24O2	TRIFLOXYSTROBIN	C20H19F3N

APPLES

Parent pesticide	Elemental formula	Metabolites	Elemental formula
Acetamiprid	C10H11CIN4	acetamiprid-desmethyl	C ₉ H ₉ CIN ₄
		acetamiprid IM-2-2	C ₉ H ₁₁ CIN ₄ O
		acetaniprid IM-1-2	C10H14CIN4O
		acetamiprid IM-1-3	C ₉ H ₁₁ CIN ₂ O
		acetamiprid IM-1-4	C ₂ H ₉ N ₂ Cl
		acetamiprid IM-1-5	C ₉ H ₁₂ N ₃ Cl
		6-chloronicotinic acid	C ₆ H ₄ CINO ₂
		6-chloronicotinic acid-dehydroxy	C ₆ H ₆ CINO
Boscalid	C18H12Cl2N2O	boscalid M510F47	C ₆ H ₄ CINO2
		boscalid M510F62	C12H10CIN
		boscalid-dihydroxy	C18H12Cl2N2O3
		boscalid-hydroxy	C18H12Cl2N2O2
		bosealid-hyroxy glycoside	C24H22Cl2N2O7
Ametoctradin	C ₁₅ H ₂₅ N ₅	Ametoetradin-M650F03	C ₁ H ₁₁ N ₂ O ₂
Diference and	C-H-CINO	Amelociradin-M650F04 Difenosonarala (CGA 189138	C ₁ H ₂ N ₃ O ₂
Difenoconazoie	clintle (alo)	Difenoconazole CGA 205374	CuHuClNiO
		Difenoconazole CGA 205375	C ₁₀ H ₁₁ Cl ₃ N ₁ O ₂
1		Difenoconazole-hydroxy	C19H17Cl2N2O4
Dimethomorph	C21H22CINO4	Dimethomorph-Z7	C15H13CINO3
		Dimethomorph-demethyl	C ₂₀ H ₂₀ CINO ₄
		Dimethomorph-demethyl glycoside	C ₂₆ H ₃₀ CINO ₉
		Dimethomorph-hydroxy	C21H22CINO3
Fenhexamid	C ₁₄ H ₁₇ Cl ₂ NO ₂	Fenhexamid-glykoside	C ₂₀ H ₂₁ Cl ₂ NO ₂
		rennexanlid-hydroxy Fenhevamid, hydroxy obdoxide	C.H.CINO.
		Difenbeyamid	C_H.CLN.O.
Fluxapyroxad	C10H15FcN10	M700F002	C.H.N.F.O.
	-18-12-3-3-	M700F008	C.H.N.F.O
		M700F008-glycoside	C ₁₁ H ₁₂ N ₁ F ₄ O ₆
Fluopicolide	C14HgCl3F3N2O	2,6-dichlorobenzamide	C ₃ H ₃ Cl ₃ NO
-		3-chloro-5-(trifluoromethyl) pyridine-2-karboxylová kyselina	C ₃ H ₃ CIF ₃ NO ₂
		Fluopicolide-hydroxy	C14H3CI3F3N2O2
Fluopyram	C16H11CIF6N2O	Fluopyram-hydroxy	C ₁₆ H ₁₁ ClF ₆ N ₂ O ₂
1	3 960 464	Fluopyram-hydroxy glycoside	C ₁₆ H ₁₁ ClF ₆ N ₂ O
ChlometranBergh	C II D-CINO	Fluopyram-benzamide	CH PNO
Chlorantranniproc	CI8HI4HICI2H902	chlorostraniliprole IN-FCD73	C-H.CINO
1		chlorostraniliprole IN-DBC80	C.H.BrCN.O.
		chlorantranilinrole IN-FOW78	CHBrC-N-O
		oblogastranilingole IN E9N/04	CHBrCl-N.O.
		chlorantranilintole IN-GAZ70	C-H-BrChN-O
		chlorantranilinnele IN-H7H20	C.H.BrCl.N.O.
Imidacloprid	C ₆ H ₁₀ ClN ₃ O ₂	Imidacloprid-hydroxy	CaH ₁₀ CIN ₅ O ₁
		Imidaeloprid-olefin	C ₉ H ₈ CIN ₉ O ₂
		Imidacloprid-nitrosamine	C ₉ H ₁₀ CIN ₅ O
		Imidaeloprid-denitro	C ₉ H ₁₁ CIN ₄
		Imidacloprid-ketone	C ₃ H ₁₀ CIN ₃ O
		Imidacloprid-CHMP glycoside	C ₁₂ H ₁₆ CINO ₆
InneraBeerb	C.H.NO	Immacloprid-CHMP geniliobioside	C_H_N.O.
iprovancaro	-18038030)	Innvalicarb-hydroxy	C.H.N.O.
Meptyldinocap	C11H24N3O4	2,4-DNOP	C14H20N2O5
Metalaxyl	C ₁₅ H ₂₁ NO ₄	Metalaxyl-hydroxy	C13H21NO3
		Metalaxyl-CGA 62826	C14H19NO4
		Metalaxyl-CGA 107955	C ₁₃ H ₁₇ NO ₄
Methoxyfenozide	C22H28N2O3	Methoxyfenozide-hydroxy Methoxyfenozide hydroxy	C ₂₂ H ₂₈ N ₂ O ₄ C_H_N.O
		Metnoxytenozide-hydroxy glycoside Mathoxyfenozide AlbuAccer	C.,H.,N.O.
Metrafenone	C.H. BrO.	Metrafenone-CL3000407	C.H.,BrO.
	a file of the owners	Metrafenone-CL379395	C ₁₀ H ₁₀ BrO ₄
		Metrafenone-CL1500836	C19H2006
Myclobutanil	C13H17CIN4	Myelobutanil-hydroxy	C ₁₃ H ₁₇ CIN ₄ O
		Myelobutanil-hydroxy glycoside	C ₂₁ H ₂₇ CIN ₄ O ₆
		Myclobutanil-oxo	CisHisCINdO
		Myelobutanil-butyric acid	C ₁₀ H ₁₁ CIN ₄ O ₂
Pirimicarb	C11H18N4O2	pirimicarb-hydroxy	C11H18N4O3
		pirimicarb-desmethyl	C10H16N4O2
	21 PF	pirimicarb-desmethyl formamid	C ₃ H ₁₁ N ₃ O
Pyraclostrobin	C ₁₉ H ₁₈ CIN ₃ O ₄	Pyraclostrobin-desmethoxy	C H CNO
I	I	Pyraciostrobin-hydroxy	c ₁₉ n ₁₈ cm ₃ 0 ₅

	1	Pyraclostrobin-dihydroxy	C19H13CIN3O6
		Pyraclostrobin-hydroxy glycoside	C23H28CIN3O10
		Pyraclostrobin-konjugát	C24H26CIN3O8
		Pyraclostrobin 500M55	C21H27CIN2O10
Pyrimethanil	$C_{12}H_{13}N_3$	Pyrimethanil-hydroxy	C ₁₂ H ₁₃ N ₃ O
		Pyrimethanil-hydroxy glycoside	C18H23N3O6
		Pyrimethanil-dihydroxy	C12H13N3O2
		Pyrimethanil-dihydroxy glycoside	C18H23N3O3
Spirotetramat	C21H27NO5	Spirotetramat metabolite:BYI08330 enol-glucoside	C24H33NO8
		Spirotetramat metabolite:BYI08330-enol	C18H23NO3
		Spirotetramat metabolite:BYI08330-ketohydroxy	C18H23NO4
		Spirotetramat metabolite:BYI08330-monohydroxy	C18H25NO3
Spiroxamine	C18H35NO2	Spiroxamine-N-oxid	C18H33NO3
		Spiroxamine-N-desethyl	$C_{16}H_{31}NO_2$
		Spiroxamine-N-despropyl	C13H29NO2
		Spiroxamine-kyselina	C18H33NO5
		Spiroxamine-cyclohexanol	C10H20O
		Spiroxamine-cyclohexanol glycoside	$C_{16}H_{30}O_{6}$
		Spiroxamine-diol	C10H20O2
		Spiroxamine-diol glycoside	$C_{16}H_{30}O_7$
Tebuconazole	C16H22CIN3O	Tebuconazole-hydroxy	C16H22CIN3O2
		Tebuconazole-hydroxy glycoside	C22H32CIN3O3
		Tebuconazole-glycoside	C22H32CIN3O6
Tebufenozide	C22H28N2O2	Tebufenozide-hydroxy	C22H28N2O3
		Tebufenozide-oxo	C22H26N2O3
		Tebufenozide-aldehyde	C22H26N2O3
Thiacloprid	C10H9CIN4S	thiacloprid-amid	C ₁₀ H ₁₁ CIN ₄ SO
-		thiacloprid-hydroxy	C10H4CIN4SO
		thiacloprid-sulfoxide	C10H9CIN4S2O
		6-chloronicotinic acid	C ₆ H ₄ CINO ₂